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ABSTRACT

ON THE PHYSICAL REALIZABILITY OF BROAD~BAND EQUIVALENT

CIRCUITS FOR WIRE LOOP AND DIPOLE ANTENNAS

Results of a study of the feasibility of using Singularity Expansion Method
(SEM) data to synthesize broad-band equivalent circuits for loop and wire
structures are reported. The positive realness of admittances derived are
studied, on the basis of both pole-pair groupings and eigenmode groups within
the SEM formalism. Synthesized circuits are given for a center-drivenm and a
quarter-driven stralght wire antenna, and fér a circular loop. Results are
compared with those derived by means of numerical solution of the time-
dependent integral equations for each structure. The sensitivities of the

response to changes in the values of poles and to circuit element values are

considered,
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CHAPTER I

INTRODUCTION

1.1 Description of SEM

Much attention has been focused on the use of the singularity expan-
sion method (SEM) to solve broad-band transient electromagnetic field problems
involving scatterers since its formalism was developed by Baum [1,2] in 1971.
SEM formalism érew from the experimental observation that the transient
response of scatterers is dominantly composed of one or more damped sinusoids.
Since such damped sinusoids correspond to conjugate pole-pairs in the complex
frequency plane (or s—plane), Baum postulated that a complete representation
of the transient response could be obtained by knowledge of all s~plane sin-
gularities of the object's response. Such s-plane singularities potentially
include poles, essential singularities, branch cuts, and entire functions. A
complete SEM representation of a scatterer consists of a set of singularities,
the modal current distribution associated with a singularity, and a normaliz-
ing coefficient. Marin [3] showed that perfectly conducting objects in free
space, such as are dealt with in the present work, have only pole singular-
ities. Hence only pole singularities are considered in this work.

Because the SEM approach reduces the problem of finding a transient
response for a given object to that of finding the object's singularities, the
associated modal distributions, and the coupling factors Vhich weight a given
singularity's contribution to the response for a given exciting waveform, we
see that SEM offers a more compact and efficient way of representing transient
responses than previous methods. These methods include numerical solutions of

differential/integral equations in the time or frequency domain, and integral
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operator modal approaches., The connection of the latter approach, sometimes
referred to as the eigenmode expansion method (EEM), to SEM has been demon-
strated by Baum [4]. In the present work extensive use of EEM in conjunction
with SEM is made. The utility of SEM lies in the low and intermediate fre-
quency ranges, and is particularly useful for studying the response of scat-
terers to the nuclear electromagnetic pulse (EMP) because of the presence of
frequencies whose wavelengths range from long to short compared to scatterer
dimensions in such pulses. In addition to compactness and efficiency, SEM

offers greater physical insight into a problem than other methods.

1.2 Scope of Present Work

The motivation for the present work derives from the insight that
it may be possible to construct passive RLC (resistor, inductor, capacitor)
circuits from the pole and residue data of SEM. Such circuits might then be
used to predict the transient current response of an object to various wave-
forms. This idea has been formalized by Baum [5,6] and the present work
centers on the feasibility of this approach for the construction of some
realizable equivalent circuits for radiation-gathering structures - in par-
ticular on the positive real considerations of realizability for convenient
formalisms.

In a previous work Hess [17] has performed an EMP coupling analysis
using transfer impedances derived from SEM. Schaubert [16] has recently con-
structed lumped-element equivalent circuits for a center-driven dipole and a
Yagi antenna, using experimentally derived SEM data., Schaubert extracted SEM
data by means of Prony's algorithm from the antenna terminal voltage wave-
form due to a step-like excitation, and used this data to construct the total

impedance of the antennas. Schaubert then used Brune's synthesis method to

ot N, g |




derive equivalent circuits., The present work uses theoretically derived SEM

data and addresses the problem of realizing the antenna impedance by indi-

vidual, transformerless, circuit modules which can be related to the SEM data.
Baum ([5,6] suggested the construction of equivalent circuits on a

pole at a time basis, a conjugate pole-pair basis, and an eigenmode basis, and

. gave generalized formal circuits for each type of synthesis, The realizabil-

ity of the formal circuits was not treated in detail. The formal development
of SEM leading to equivalent circuits is left to Chapter II. The case of
conjugate pole-pair synthesis is examined briefly and related to earlier work
by Guillemin [7], in order to illustrate some of the salient aspects of the
current work. A more detailed consideration of this and related problems is
given in Chapter II1I.

The physical realizability of a given impedance or admittance
quality hinges on whether or not that quantity is a positive real (PR) func-~
tion of the complex frequency s. A positive real function is defined as a
function that is real for s real, is analytic in the right half-plane, and
whose real part is positive along the jw axis. Additionally, any poles on
the jw axis are simple with real and positive residues. It is instructive to
study the conditions under which a conjugate pole-pair exhibits positive real-
ness ("PRness"),

The admittance associated with the nth SEM pole is written as

Y (s) = (1.1)
where 8, = %, + jwn is the complex pole and a, =a + jBn is the complex
residue. A modified form of this admittance, which has the property of being

zero at zero frequency, is written as




i

&
e

-4 =

f an an

t(e) = —— + 2 (1.2)
n n

8o that Y;(o) = 0 is physically consistent with the terminal admittance of a
simply-connected scatterer.

SEM poles are either purely real or occur in conjugate pairs. The
conjugate pair case is the more general one. The admittance of the nth con-

jugate pole-pair is then, in unmodified form,

¥P(s) = —F— + — (1.3)

or

*
2 Real(an)s -2 Real(ansn)

Y::p(s) = . (1.4)

e -2 Real(s )s + [snf2
In this form we see that the coefficients of Ysp(s) are real valued, as they
must be for circult realizability. The other criterion necessary to ensure
realizability of sz(s) is the non-negativeness of its real part along the
jw axis.

Guillemin {7] showed that for an unmodified admittance function
formed by conjugate pole-pairs to be PR, certain conditions must be met. If
we let
d;s + d

1) » 5——2O— (1.5)
s + bls + b0

with




i

f "3
dl - Zan b1 = -20n
dy = =2 Real(a:sn) by * lsﬂl2 = ai + m: . ;
= -2(a g + B8 w) (1.6)

We see that bl and bo are positive for a pole in the left half-plane, while
d1 and do may be of either sign. In order to find what conditions need to
apply to d1 and d0 for Y;p(s) to be realizable, we need to find its real part,

and check for non-negativeness at s = jw. This leads to the condition

2
dobO + (dlb1 - do)m 20. (1.7)
This requires
dlbl 2 d0 20, (1.8)

which leads to the PR conditions

v
o

-0 0+ B Ww
nn n

) (1.9

and

- 0 =B w

v
o
.

(1.10)

We can combine these conditions into a single expression which reflects the

} necessary restriction on the residue for a PR function to result. This

expression is

aﬂ. wn
> B, (1.11)
" IBnl “On 1
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This condition is illustrated graphically in Figure 1. These and similar PR
conditions are used extensively in Chapter III. For Y:p(s) to be PR, the
residue must lie within the shaded portion of the a-plane. Unfortunately, it
is seen that most SEM poles and residues fail to meet this criterion, and
ways of circumventing this difficulty are devised. The parameter tests which
are required for modified conjugate pole-pairs have been derived, and are

presented in Chapter II1I.

In Chapter II, the formal development of SEM in conjunction with

EEM as applied to equivalent circuits is given, and the sources of SEM data

LS

} used in this study explained, Chapter I1III deals with PR considerations of

| functions derived from SEM data on conjugate pole-pair and eigenmode bases,

| and examines pole/residue error considerations. Chapter IV encompasses some
i ' synthesized circuits for wire and loop objects, and compares the results
obtained from these circuits and analyzed by a SCEPTRE circuit analysis pro-
gram to results obtained from a thin wire-time domain (TWTD) program. Also
) in Chapter IV the sensitivity of these circuits is considered. Chapter V

gives the conclusions reached by this study, and points out areas which need

further consideration.
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CHAPTER II

FORMAL DEVELOPMENT OF EQUIVALENT CIRCUITS

2.1 Introduction

In this section we consider the problem of the broadband admittance
of an arbitrary scatterer or antenna at a gap region in the object. The
approach is to cast the object's terminal pair formed by the gap into the
form of a Norton equivalent circuit. Then, using SEM, the equivalent admit-
tance is found in the form of a residue series in the complex frequency
variable. Subsequently, network synthesis techniques are applied and equiva=-
lent circuits constructed. Three different generic circuit configurations
are considered, corresponding to three different levels of grouping the SEM
poles. In the first circuit, the admittance formed from the individual poles
is the basic module. In the second the pole-pair admittance formed by group-
ing a conjugate pole-pair together is the basic module. Finally, the admit-
tance formed by grouping the poles according to eigenmodes with which they
are associated, as directed by EEM results, provides the basic module. The
admittance formed by eigenmode grouping we term a "terminal eigenadmittance".

Ip the last part of the chapter the sources of the SEM data used in

this study are discussed.

2,2 Formulation of the Norton Equivalent Problem

Figure 2 gives the steps required in defining the Norton equivalent
for an active circuit with a single port. The active circuit can be replaced

by a single equivalent admittance and a current generator in parallel, as in

Figure 2a. In Figure 2b the methods for finding the current generator and

e R

g
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Defining the Norton equivalence admittance and
short circuit current.
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equivalent admittance, both necessary for the replication of the active cir-
cuit as seen by the port, are illustrated. The short-circuit current is found
by shorting the port of the active circuit, and the equivalent admittance is
found by setting the sources of the active circuit to zero and measuring the
admittance seen by the: port. The following development is essentially that of
Baum [5]. It is reproduced heve for the sake of completeness.

The single port scatterer problem is defined in Figure 3. In this
figure, Sa is the surface of the scatterer, all of which is not shown. The
gap which is formed by parting the scatterer with a plane is denoted by Sg.

38 is a unit vector defining gap orientation and A is the gap width,

Using this geometry, we desire to find the Norton equivalent repre-
sentation of the antenna as seen by the gap (feed-point). The method is
1llustrated in Figure 4. The equivalent admittance is found with the aid of
Figure 4a. The first step is to specify an electric field at the feed po}nc.
The ratio of gap current respogse to the voltage associated with the specified
field yields the terminal admittance., We choose a field that is divergence-
less in the gap volume, i.e., a quasi~static electric field. The field is

represented then by

Eg(?,c) = +v<:>'e’a<?) , (2.1)

‘>Lom

where Zg(;) = . V(t) is the gap voltage.
Having defined the electric field across the gap, we need a suitable
definition of the current I(t) through the gap. For this we integrate the

current density over the surface Sg of the gap and average over the longitu-~

dinal direction of the gap.

a

e

W

L. o |




Figure 3: The scatterer/antenna gap geometry.
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I(t) = j‘ 3(:,:) . ;g(;) ds dz
S
g

= <J(r,t) ; e (1)> (2.2)
8 8

where 3(;,t) is the surface current density, z+’— denote the edges of the
gap, and the notation <>8 denotes spatial integration over the cylindrical
surface forming the gap.

The equivalent admittance of the gap is then

Y (s) = f‘s) - 1 <§(¥,s) ; e (D)> (2.3)
V(s)  V(s) & s
where ~ represents the two-sided Laplace transform.
The procedure for finding the short-circuit current is detailed in
Figure 4b. Here the sources are represented by an electric field 1ncidcn£ on
the antenna. The short~circuit current through the shorted gap is then cal-
culated from Equation (2.2), with %inc(;,é) = zg(;)ainc(s)'
The present work is concerned entirely with the equivalent admit-
tance depicted in Figure 4a and the positive real considerations of that
gsolution. Therefore the derivation of the short-circuit current generator is

not given here, Readers interested in this subject are referred to Baum [S].

2.3 Equivalent Admittance Circuits

We construct formal equivalent admittance circuits using the singu-
larity expansion of the current 3(?,5) as a tool. Three such circuits are
constructed. These circuits, in order of the complexity of the modules from

which they are constructed, are composed of
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- pole at a time admittances

-~ pole-pair admittances
~ terminal eigenadmittances
The singularity expansion of the current in the frequency domain is

L (51

3G9 = 6(s)[i : I B - e ie(;,sﬂ , (2.4)

where G(s) is the voltage across the gap, ;;i is the class I coupling coeffi-
: cient, and jni(;) is the natural current mode. The index n indexes over the
‘ eigenmode sets’pf poles, and the index i indexes the individual poles in an
‘,! eigenmode set.l ie(;,s) is a possible entire function contribution. Several
researchers [8]) have conjectured this contribution to be zero when the sum
i mations are ordered over eigenmodes as indicated in (2.4). The entire

function contribution is not considered in this work.

Inserting this form of 3(;,3) in Equation (2.3), we obtain

f w}g(s) - <[: Ti nt 3 @ - sni)'l + ieG,s)] ; 28(¥)>g (2.5)
or
t (o) ; i a (s ~s )70+ %) (2.6)
: - i i Y, (s) +¥%) , 2.7)
where

-

a

-+, >
Wi <nniJni(r) H eg(r)>8 (2.8)
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and §e(s) is the entire function contribution, 1if present. The term a4 is

termed the residue associated with a pole Shi

Equation (2.7) is now used to construct formal circuit diagrams. The i
first of these is given in Figure 5, in which the modules are formed from one 1
pole at a time. In this figure the port representing the antenna gap is on

fﬁ the right, with voltage 6(3) across it and current i(s) into it. The modules

are placed in parallel as dictated by Equation (2.7), and the entire function

;;Q modules are also shown,

Many objects, such as dipole antennas, exhibit a zero admittance at
zero frequency. It is desirable to modify the above admittance forms to
exhibit this property. We do this by subtracting off the value of the admit-

tance at zero. Writing the admittance in this form gives

3 -1, -1 ze' 1
Yg(s) = ﬁ iani [(s - sni) + sni] + Y (s) (2.9)

i . ol } "e'

! | = ﬁ i Yni(s) + Y (s), (2.10)

where Y;i(s) is termed the modified admittance module by Baum. This form
differs from the unmodified form by only the addition of a constant term.
R ' The equivalent circuit construction with modified admittances would take the
same form as Figure 5. We note that the modified form is inappropriate to
i the pole at zero for multiply connected objects because the subtractive
factor is undefined.

Since in general both the residues and poles in Equation (2.6) are
complex, pole-at-a-time modules may contain unrealizable elements. This is

demonstrated in the next chapter. As a step toward the development of real-

izable circuits, modules formed by grouping conjugate pole-pairs together are
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studied. This can be done for both modified and unmodified admittances. In

the unmodified case we have, for the pole-pair module,

ocp - -+ -~
Yni(s) Yni(s) + Yni(s) , (2.11)
where
a
b ni
Yni(s) = 3= 3 (2.12)
ni

and ?;1(3) is the conjugate. Figure 6 illustrates this circuit arrangement.
In this figure admittances whose poles have no imaginary part are designated
by ino(s).

The final circuit considered consists of terminal eigenadmittance
modules, and is represented in Figure 7. Here all poles belonging to an
eigenmode are gathered into one module, and the complete circuit is the
parallel sum of these modules. Again, either modified or unmodified forms

may be used. The module for the nth unmodified eigenadmittance is

?:13(5) - i Ts) + ¥ _ (o) . (2.13)

In Chapter III the PRness of these different circuit constructions
18 discussed, and in Chapter IV passive, realizable circuits are built to

give the admittance of straight wire and circular loop antennas.
2.4 Sources of SEM Data
2.4.1 Straight Wire Data

In a previous work Tesche [9] has derived the SEM data for the

straight wire, using a method of moments (MoM) solution to Pocklington's
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integro-differential equation for the axial current flowing on the wire
I1(z,8). This equation has the form
2 2

L
-8 eOEinc(z,s) = -2-2- - -3—2- I 1(z',8)K(z,2",s8) dz' ,
az c 0

2 -2
1 c
Kt o) = 5 [ S s

1/2
R = [(z - z')2 + a2 sin? 0%)]

and L is the length of the antenna and d is the wire diameter.

when Equation (2.13) is cast into MoM form, the result is

z(s) I(s) = V(s) . 22D

Here 2733 is the system nxn matrix, where n is the number of zones on the
antenna, and Tand V are, respectively, the response and source vectors, each
of dimension n. Using this formulation, then the SEM poles are found by
solving

det zzsnis = 0 (2.18)

for the nontrivial solutions. The natural current modes are found from the

set of equations

z(&ni) I(sni) =0.
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The normalization coefficient Bni is found by computing

B, = 1
nl T 3 oI '
Ini s 2\8 lsnilni

(2.20)
Using these equations, an SEM data base was constructed for a straight wire
with an aspect ratio (diameter/length) of .0l. It was found convenient to
use 64 zones fof the MoM equations. The resulting data agrees with the
results reportéd by Tesche [9}.

The SEM poles for the wire fall in layers in the left-hand s-plane,
indicated in Pigure 8. Poles are indexed by (m,n), where m is the layer and
n is the pole, numbered sequentially by distance from the %% axis, where C is
the speed of light. Layer one consists of those poles closest to the jw
axis, layer two of the next closest, etc., Reference to this layer scheme of

ordering poles will be made frequently.
2.4.2 Circular Loop Data

The SEM loop data is an iuaportant complement to the numerical data
derived for the wire, in so much as the electric field integral equation for
the loop can be approximately solved analytically due to symmetry by expand-
ing the current into a Fourier series, as done by Wu [10]. Also the loop
represents a doubly-connected object, as opposed to the singly-connected
wire, and the difference in the SEM representation of the admittance for
these two objects can be investigated. Namely the wire evidences zero admit-
tance as 8 + 0 while the loop admittance does not. Due to the analytical
tractability of the loop integral equation it is possible to identify and

group the poles by eigenmodes, which will be useful when the investigation

of eigenadmittances is made in Chapter III.
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T TR I - T e g S s, 7T+ e

|

- 23 -

The SEM current expansion given by Umashankar [11], based on Wu's

results, is

e~ ine (2.21)

where n is the index over modes and i the index over poles in a mode and n is
the free space impedance. a(s) is the transform of the input waveform. The
modal currents are of the form e-jn¢. Equation (2.21) is the representation
from which the gap admittance for the loop is derived. Figure 9 gives the
loop geometry.

When discussing the poles of an eigenmode for the loop, Wilton and
his co-workers break the poles into three groups [11,12], and this practice
will be followed here. Figure 10 shows this classification. The type I pole
for a mode is that pole which lies closest to the jw axis. Type II poles, of
which there are a finite number, lie in a semicircular arc veering towards
the negative real axis. Type III poles, which are infinite in number for a
mode, lie along the jw axis. The SEM data for the loop used in this study

was computed by Blackburn [12], and has been fully corroborated by Umashankar

f11].




Figure 9: The circular loop geometry.
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CHAPTER III

POSITIVE REAL CONSIDERATIONS

3.1 Introduction

In this chapter the three different modules (pole-at-a-time, pole-
pair, and terminal eigenadmittance) used to construct the equivalent admit-
tance circuits are examined to determine their PRness and hence their
realizability. Admittance modules from both the straight wire and circular
loop are examined. Parameter tests for PRness, as defined in Chapter I, are
constructed and used extensively, Also, the admittances of some modules are
studied by graphs depicting the real part along the jw axis. The question

of the effect of numerical errors on the PRness of modules is addressed.

3.2 Pole-at—-a~Time Circuits

Ideally, it would be desirable if the admittance at the feed point
could be realized by constructing individual circuit modules on a pole at a
time basis, as illustrated in Figure 5. A consideration of the individual

modules in detail shows that such a realization is untenable. The admittance

of an unmodified module in SEM terms is given by

a

> ni
Yni(s) = ?;-:-;;;7 . (3.1)

This is recognizable as an RL series circuit, with the values of the inductor

and resistor given by

L= o (3.2)

- 26 -
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and
S
R= --8%1, (3.3)
31

However, since the SEM data consists generally of complex poles and residues,
then the L and R elements take on complex values, and are hence unrealizable.
Only.in the case where a SEM pole lies on the negative real axis is the cir-~
cult realizable.

A con;ideration of the modified pole at a time circuit module

reveals the same situation. Here we have

a a a ,s
g (o) = E_:Q%—— + Sni = (snf y (3.4)
ni ni sni sni

The general complex form of the residue guarantees unrealizability.

Given that some SEM poles lie near the jw axis, the question might
be agked: Will the imaginary parts of the circuit elements, in either modi-
fied or unmodified form, be negligible? Taking the pole which is closest to
the jw axis for the wire, for the center-driven case we obtain the following
values:

Unmodified Modified

L = 833.61 - §233.97 C=-1.36x10"2 « j1.32 x10™%

R = 146.39 + j782.47 R = 146.39 + j782.47

We can see from this example that the imaginary parts are not negligible.

3.3 Conjugate Pole-Pair Modules

From the results in Section 3.2, we see that for realization of a

circuit, 1t 1is necessary to have real coefficients for the powers of s in ini'
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This can be done by combining conjugate pole-pairs into one module. For SEM !

data, this is done as follows for the unmodified case

Scp %ni a:i
Yni(s) Y s-s ML S (3.5)
ni ni :
where * indicates conjugation. Simplifying, we have . P
- * .
-cp 2 Real(ani)s 2 Real(anisni) .
s” - 2 Real(s ,)s + lsnil ?

Simlilarly for the modified case we have

* Vo2 _ * 2
2 Real(anisni)s 2 Real(ani(sni) )s
12

Y4 (s) . (3.7)

lsni|2(82 -2 Real(sni)s + 'sni
We see that in both cases the coefficients of 8 are real, In addition, all
coefficients in the denominators are positive, since all poles lie in the
left-hand part of the complex plane.

In the Introduction, the conditions placed on the residues for the
unmodified admittance of Equation (3.6) to be a PR function are given. The
conditions for the modified admittance to be PR are derived in the following
paragraphs.

Rewrite Equation (3.7) as

Y(s) = — . (3.8)




"<_iji__;1’

3

| , )

‘i d1 =2 Real(anisni) b1 = Isnil

2 d, = -2 Real(a* (s_)2) b, = -2| ,z Real(s_,) |
2 818801 %01 2 ai ni

: 4

ii b3 - lsnil .

Then the real part of ?(s) at s = ju is

) 4 2

| : . dibjw” + (dyb, - dib)w

! Real Y(s) = —577 3 5 5 . (3.9)
| blm + (b2 - 2b1b3)w + b3

Because the denominator formed in this way is the square of an absolute
value, it is always positive. Thus the question of Y (s) being positive real
devolves to

4

2
dlblm + (d2b2 - dlb3)w 20 for w20 . (3.10)

Setting the first derivative of this function to zero to find the extrema
yields such a point at w = 0. Since this point must be a minimum for a PR
function, evaluating the second derivative at w = 0 yields the first, low
frequency, PR condition

: 2(d bz - d1b3) >0, (3.11)

[ The other PR condition is obtained from observing that Equation (3.10), to be

! PR at high frequency, must have a nonnegative coefficient for the w4 term.

| This yields the condition

{ dlbl 20. (3.12)

4
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These conditions are seen to be necessary and sufficient for Equation (3.7)
to be PR. Translating the coefficients of these two conditions into the pole

and residue terms, where a g =%y + jeni and 8 = %ni + jwni’ we get

2
2|sni| (84004 + Bogtng) 2 0 (3.13)

and
2 2 2 2 2
4|sn‘i| Enioni @ni - 3“11:!.) + Bn:l.mni (3°ni - mni):l 20. (3.14)

Equation (3.13) 1is called the high frequency parameter test for
modified pole-pair admittances and (3.14) is the low frequency parameter
test, also for modified pole-pair admittances. Both of these tests must be
met (i.e., > 0) for the modified pole-pair admittance to be PR. The parame-
ter test for unmodified pole-pair admittances is derived in Chapter I and

repeated here as

% Oy - l8 sluy 20 (3.15)

For convenience we name Equation (3.15) parameter test I, the low frequency
condition of Equation (3.14) parameter test IIA, and the high frequency con-
dition of Equation (3.13) parameter test IIB.

The usefulness of these tests is illustrated in Figures 11 through
15. These figures display the parameter tests for both modified and unmodi-
fied pole~pair admittances for the first five poles of the first layer of the
straight wire, and illustrate how the values of the tests vary as a function
of the gap location on the wire. The solid line is the parameter test for

unmodified pole-pair admittances and the dashed lines are for the modified

admittances. PR regions for both admittance forms are marked by shading.
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The x-axis is the normalized distance from one end of the antenna, and the
y—-axis is the value of the parameter tests. For the equivalent circuit corre-
sponding to a particular feed 1ocation.to be realizable on a pole~by=-pole
basis, the pole-pair admittance for each pole-pair must be PR.

Note that for these first layer poles, which are the primary con-
tributors to the circuit admittance due to their proximity to the juw axis,

. only the important case of pole 1 seems to be PR (in modified form) over a
wide region of the wire. Also note that in no case for the first layer poles
is the unmodified form of the admittance realizable, and for the modified
form, apart from pole 1, only isolated spots on the antenna appear PR.
Figures 16 through 19 indicate the parameter tests for the first three pole-
palr admittances of the second layer which lie off the real axis, and the
second pole-pair admittance of the third layer.

fhese graphs indicate only a qualitative measure of positive real-
ness, however. If we look at the real part of the modified conjugate polz-
pairs directly, greater insight into the realizability is available. Figures
20 through 27 display the real part of the modified admittance along the juw
axis for the first five poles of the first layer for the center and quarter
locations of the wire. Figures 28 through 32 show the real part of the pole-
pair admittances of the second layer poles.

In these graphs the solid line indicates the modified pole-pair
admittance real part. The dashed line indicates the amount of shift between
the modified and unmodified admittance. In other words, the dashed lines
indicate the zero axis for the modified form. Several facts can be cbserved
from these graphs. The first layer poles are the primary contributors to the

admittance, as their peaks are 25 to 100 times greater than the peaks of the
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more deeply embedded poles. The level shift due to the use of modified
admittances for first layer poles is positive, indicating that without modi-
fication these poles would all have substantial negative regions for frequen-

cles below the admittance peaks. All of the first layer poles except for

pole 1 at the 1/4 point are non-PR. This result, as well as the PR quality

of pole 1 at the 1/4 point, is predicted by the PR condition curves of the

last section., However, now we can see that the violation of PRness is small

in some cases, 'and consistently has the same character for first layer poles;
i.e., the negative portion occurs as a result of the low frequency violation

of the PR conditions and results in a small negative dip before the main peak
of each admittance. This behavior suggests two questions: 1) Is the small

negativeness attributable to numerical error?; and 2) If there are no numer-

ical errors, can the admittance still be realized with perhaps some negligible

negative components? It is shown subsequently that the answer to question 1

is "yes" only for a few isolated and predictable cases. The second of these

questions is addressed in Chapter 1IV.

It is worthwhile at this point to examine the PR character of the

conjugate pole-pair admittances formed for the circular loop. The type I

modified pole-pairs for modes one through five are shown in Figures 33 through

37. These poles are the major contributors to the overall admittance of the

loop. These admittances are quite similar in character to the first layer

pole-palr admittances for the wire. Except for mode 1, these admittances are

slightly non-PR, exhibiting a negative low frequency behavior. The loop,

unlike the straight wire, has a nonzero admittance at w = 0. This gives rise

to an SEM pole for the loop at s = 0,
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The character of the modified pole-pair admittances formed using

the type III poles of mode 2 are shown in Figure 38. Similar admittance

curves characterize all type III pole-palr admittances. The characteristics

are an initial positive value rising to a peak, which then falls to a nega-
tive peak and a negative final value as frequency goes to infinity. The
peak value for the first type III, mode 2 pole is 240 times lower than the
peak of the type I, mode 2 pole.

The modified pole-pair admittances for the type II poles of mode 2
are shown in Figures 39 and 40. The figure for the pole lying on the nega-
tive real axis is not a pole-pait,.of course, but only a modified pole con-
struction. The peak admittance from this pole is some 130 times lower than
the type I pole of mode 2. The character of the type Il pole lying closest
to the jw axls is entirely negative, with a peak value some 50 times lower
than the type I pole peak. This negative behavior is a characteristic of the
type 1II pole closest to the jw axis, as Figure 41 indicates.

In summary, the following conclusions regarding pole-~pair PRness
are established:

- For the straight wire

~ Dominant layer 1 pole-pair admittances are non-PR in unmodified
form, exhibiting a negative value at zero frequency.

Modified layer 1 pole-pair admittances are in general non-PR,
exhibiting only a very slight negative value in the low frequency
region. Exceptions occur at isolated locations on the wire for
all pole-pairs, and pole-pair 1 is PR over most of the antenna.

Deeper embedded pole-pairs, which contribute much less to the
total admittance, are PR on various intervals, sometimes in modi-
fied form and other times unmodified.

~ For the circular loop

- The dominant type 1 pole-pairs are non-PR in unmodified form,
exhibiting a negative value at zero frequency.
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- Modified type I pole-pairs are in general non-~PR, exhibiting a
slight negative value in the low frequency region. An exception
is the pole-pair of mode 1, which is PR,

- Type II pole-pairs, which contribute much less to the total
admittance than do type I, exhibit a range of PRness. The type
I1 pole~pair closest to the jw area is non-PR in unmodified or
modified form, and the pole admittance (not a pole=pair) which
lies on the -0 axis igs PR, Other type II pole-pairs are not PR
in either form.

- Type III pole-pairs, which also have small contributions to the
total admittance, are non-PR in modified or unmodified form.

3.4 Eigenmode PR Considerations

When the synthesis of equivalent circuits is carried out on a ter-
minal eigenadmittance basis, the theory of the eigenmode expansion provides
some very useful insights into the problem of finding PR fumnctions. First we
note that the inverse eigenvalues k;l(s) are positive real functions, as they
derive from an impedance integral equation for a passive object [6). The
PRness of the inverse eigenvalues A;I(s), which are termed eigenadmittances
by Baum [4], has been demonstrated by Wilton [13]. This proof is reproduced
in the Appendix for the sake of completeness. However, the PRness of these
eigenvalues does not insure the PRness of the associated terminal eigenadmit-~
tances of Equation (2.13), as we demonstrate in the Appendix. Additiomally,
the construction of terminal eigenadmittances depends on the availability of
the eigenmode groupings of poles. For analytically tractable objects, such
as the loop or sphere, such groupings are available; however, for objects
such as the wire, where the poles are found numerically, the task of grouping
the poles by eigenmodes is much more difficult. For a complex‘object where
the poles are experimentally . 1ived, if at all, complete grouping information
is not likely to be available.

Wilton and his colleagues [13] have derived eigenmode groups of

poles for the wire on a numerical basis. They have used these groupings as
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the basis of conjecture for the general grouping scheme indicated in Figure
42, Note that there are only a finite number of poles belonging to each
eigenmode in this representation. The circular loop manifests an infinite
number of poles associated with each eigenmode.

In the case of an infinite number of poles per eigenmode, the
question arises as to whether all poles are necessary for PRness and, if not,
how many poles must be included to have a PR function. In the case of mode 1,
where the type I pole-pair forms a PR modified admittance by itself, inclu-
sion of the type II pole of this mode destroyed this PR character in the low
frequency region, although the maximum negative value is only -.SXI0-8 mhos,
compared to the positive peak value 6f 7.SXI0-3 mhos. The systematic addition
of type III poles reduced the maximum negative value, and pushed the fre-
quency at which this maximum occurred closer to zero until, with the inclu-
sion of four type III poles, the admittance was again PR., The inclusion of
these poles is found to have little effect on the appearance of the admit-
tance when compared to the type I pole-pair admittance, except for introduc-
ing some small high frequency variations due to the type III poles. The peak
admittance value of the eigenmode grouping has been lowered by some .75 per-
cent.

An interesting feature is observed when the eigenadmittance group-
ing is performed. As more type III poles are included, the difference between
the modified and unmodified forms becomes smaller, and in the limit would
appear to give the same admittance. In other words, the constant terms intro-
duced into the modified form sum to zero for a given eigenmode.

A similar examination of mode 3 where the type I pole is not PR

revealed the same behavior as that for mode 1. Increasing the number of
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;‘ type III poles systematically reduces the negative portion of the admittance. !
However, inclusion of all seven type III poles available did not produce a PR

". result, although the maximum negative value was reduced to only -.ZSXIO~8. For

; higher modes a similar result also holds. In general, to make an eigenadmit- '
f

: ? tance PR requires the inclusion of many type III poles, making the circuit
i

realization more complex, since the additional poles entail more circuit

3 elements.,

§5§ It ié worthwhile to point out that if the problem at hand were

i merely to synthesize the total admittance of the wire or loop using SEM data,
then the PR character of the admittance is assured. The mathematical reason-—

ing leading to this conclusion is as follows. If the pole of the lowest

- frequency for the structure is PR or can be made PR, then when all the poles
for the structure are grouped the low frequency non-PR character of the
higher poles are negated by the larce positive peaks of the lower poles. ';
However, to inclide simple Norton generators in the synthesis, it is neces-

) sary to try to realize the admittance by some group of recognizable modules.

r Further, it i1s desirable that these modules be as simple as possible.

When the terminal eigenadmittances for the straight wire are con-
sidered, the results are found to be ambiguous. For eigenadmittance group-
ings using conjugate pole-pairs at the center of the wire, the results are
PR, as indicated in Figures 43 and 44. However, when such groupings are
attempted for a terminal taken at the quarter point of the wire, some non-PR
results are discovered. These groupings are indicated in Figures 45 through
49. The postulated eigenmode groupings for eigenmodes 2, 3, 4, and 6 are

non-PR, and in the case of modes 3 and 6 the negative part is not negligible.

s DI St JHOW, s PR woncnt SN, worng Y At

™is result could have been foreseen by reference to the parameter test
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results. Taking the case of mode 3, poles 3 in the first layer and 2 in the
second layer, we see from the PR condition graphs that at the quarter point
for these poles the PR conditions for the modified admit;ance form is vio-
lated for both poles. Since the real part of each pole adds algebraically
to produce the total real part admittance, then the grouping of non-PR poles
cannot produce a PR result. Similarly the unmodified admittance formed by
grouping these two poles is non-PR.

While the discussion in the Appendix indicates that the terminal
eigenadmittances are not demonstrﬁtively PR, it is interesting to speculate
as to altermative reasons for the non-PR result. That numerical errors in
pole/residue data is the source of departure from PRness is unlikely in
light of the general error analysis discussed in the next section. Other
possibilities include improper groupings of poles associated with the eigen-
values and missing components of the Mittag-Leffler expansioi: of the eigen-
values. Wilton's groupings are based on similarity of modal features and
the topological kinship of the straight wire to the sphere. We are inclined
to trust Wilton's conjectured groupings. Therefore it is difficult to draw

more specific conclusions at the present time.
3.5 SEM Pole/Residue Error Effects on PR Considerations

The SEM data for the wire is numerically derived. This gives rige
to the question as to how strongly numerical errors influence the PRness of
the admittances derived from this data. This is especially important in
light of the very small negative values encountered in the modified conjugate
pole-pair admittances for first layer poles. We have elected to investi- f
gate this question in terms of the parameter tests given in Section 3.2. {

Errors in the real and imaginary parts of both the poles and the residues

were introduced, and new parameter test curves were produced. In such a way




i

: the sensitivity of these conditions to errors in the poles and residues can
be observed. The study is centered on errors in the real part of the pole.
The real part of a numerically derived pole is generally less trustworthy
than the imaginary part.
Results for pole 1 of the wire are given in Figures 50 and 51. 1In
these curves, the solid line is the original value, and the dashed lines %

%- indicate the changed values. Figure 50a shows the effect of a +5 percent

change in the pole real part on the high frequency condition for pole 1. The

Ri
-

t

change in this condition is very slight. Figures 50b through 50d indicate

the effect of changing the other parameters by 5 percent. The largest change,

i ‘ of some 30 percent, occurs when the imaginary part of the pole is changed.

‘ Since this parameter is accurately known (within 2 percent) in the numerical

i ; data, this is not bothersome. Note that in none of these graphs is the basic

character of the condition changed; that is, the shape remains the same and

the condition remains positive.

! : An entirely different situation occurs when we modify the parame-
ters by 5 percent for the low frequency test. These effects are illustrated

ﬁ in Figures 5la and 51b. In Figure 5la, a change of +5 percent in the real
part of the pole results in an entirely positive condition. This change
corresponds to forcing the real part of the pole slightly away from the jw

fﬁ* axis. The remaining figures indicate a similar occurrence when the imaginary

| ) part of the pole is forced towards the real axis, when the imaginary part of

the residue is forced towards the real axis, and when the real part of the

residue is forced away from the jw axis.,

The real part of this pole is modified to produce a PR function,

both to study the effect on the admittance and for latter use in circuits,
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Because an error of +5 percent for the real part of the pole is within the
computational uncertainty of the data, a value of this pole with a real part
changed by 3.5 percent is used, which allows the modified form of this admit-
tance to be PR over the entire wire. When this is done, it is found that the
peak value of the modified admittance formed from this pole decreases by 3
percent over the original value.

In light of these results for pole 1, the other poles were studied
in the hope of'producing PR results for the entire wire with adjustments in
the pole value within the limit of numerical error. It was found however
that all the other poles retained the essential characteristics of the non-PR
conditions under as high an error as 10 percent. Figures 52 through 57 indi-
cate these results for poles 2 and 3 for the first layer, and pole 2 of the
second.

he conclusion to be reached is that the small negative low fre-
quency admittance values found when forming modified conjugate pole-pair
admittances are not attributable to any small numerical errors in either the
poles or residues, but are inherent properties of these admittances. The
important exception is pole 1 in the first layer. It was found that when
large changes in the poles or residues were made in an attempt to make these
pole-pair admittances PR, the peak value of the admittance, which we know to
be accurate through comparison with integral equation admittance results, is
changed substantially. Hence means other than parameter modification or

approximation must be used to realize these admittances.
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CHAPTER IV

CIRCUIT SYNTHESIS

4,1 Introduction

This chapter addresses the construction of equivalent admittance
circuits for three objects - the center-driven wire, the quarter-driven wire,
and the circular loop. The circuits derived are physically realizable; that
is, they are composed only of passive resistor, inductor, and capacitor
elements. The circuits are composed of terminal eigenadmittance modules
whenever possible, However, when terminal eigenadmittances are not PR, two
other methods are used to create equivalent circuits. In the first, a method
is devised by which an admittance having a negligible non-PR region can be
made PR. In the second, poles are regrouped to produce a PR result. The
response of these circuits to a transient voltage at the port are compared to
the response of the original object to the same voltage. A study of the sen~

sitivity of these circuits to element variations is also made.

4,2 Center-Driven Wire

Two equivalent circuits are constructed. The first is composed of
terminal eigenadmittances, and the sesond employs first layer pole-pair admit-
tances only. To construct this second circuit, a method is given by which
the small non-PRness of these admittances can be neglected. The responses of

both circuits are investigated.
4.2.1 Terminal Eigenadmittance Results

The PR results from Chapter III, which indicate that the summation

of poles along the eigenmodes postulated in Figure 42 are PR and hence
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physically realizable, are used as a basis to construct an equivalent circuit
for the center-driven wire. The procedure followed is to construct the
rational polynomial formed by the summing of those poles in an eigenmode and
their conjugates, and then use standard circuit synthesis techniques to
derive the equivalent circuits. The circult synthesis is done by reducing
the polynomial to a minimum conductance - minimum reactance form, and then
applying the Bott-Duffin technique. Although a complete representation for
the eigenmode érouping is available for only the first six eigenmodes, we
chose to include mode seven, although the data base for this mode lacked one
pole in the fourth layer, since it was PR without this pole. The poles and
residues used are listed in Table 1. Figure 58 gives the result of this
synthesis, and Table 2 lists the element values. The reactive componeuts

are normalized by'£% . The real part of pole 1 is biased upward by 3.5 per-
cent of the peak value, as indicated in Chapter III, to make it PR. Because
only modes which possess current distributions which are even functions
couple at the center of the antenna, eigenmodes one, three, five, and seven
are realized. Table 2 also gives the actual circuit element values needed to
realize the center-driven admittance of a 100-meter wire. This length was
chosen because it gives element values which are in the picofarad, microhenry
range., These values change proportion;lly to length, so that only a certain
range of sizes for the wire may actually be realizable. This scaling of
inductors and capacitors is frequency scaling, with the scaling factor equal

to ﬁ% . Hence both capacitors and inductors increase with increasing length.

[ .
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Table 1

Poles and Residues Used for Eigenmode Synthesis,

Center-Fed Cylindrical Antenna

Mode Poles Residues

1 -.08427+3.9158 \1112x10" 244, 3121x103

3 -.1473+§2.870 .1319x10™ %+, 3301x10™3
-2.491+§1.328 .0988x10" 3+ . 2529x10™3

5 - 1877+§4.834 «1423x10"2+3, 3521x10"3

} -2.894+33.528 .1408x10"3+4.1850x10™3
| -4.5174§1.497 .3218x10"%+4,2378x1073
) 7 -.2177+§6.792 .1496x10™ 2+ . 3699x10"3
-3.140+§5.600 1647x10"7+4,1687x10"3

{~ -5.069+j 3. 890 .6818x10" %+ .1628x10™3

Poles are normalized as per Tesche [9]




L i ke oA e,

T et g " e T s " —— - 1 . -
—— — |~ | . B e | o — ey I e . . . . . . ) ,
‘L pue’g‘g‘1T sepou
‘3ITM UDATIP-I93UdD I0J SOTNpowW adueljtwpe
-ush13 TeuTWID] HUTSN FTNOITO juateAarnbm :8g aanbtg
m _ |
LY
i 29 ooy M.: . ﬁ .
bl ) ! T3]
In.tb M & _ I—lsno w e | mza
i < ey ] ”©y uﬂ 952 L Jl'nu
: LY R 5y W ced
! = s == 6> _ == €82
Imapu _ - 8$€d F l—l | F A_l‘ |.—I
: — a_
o ]
o v e
! W m»»._ cey
IR - <
(VR ]
[ 21
Mnsu 211 L2 €Y 186
U
-2 81
bt u? 0 A K1 n_v
129 13 (1]
T wd .._.. %I T )

e R TR




, -91 -

i

|
f* | Table 2

' {

‘ Element Values Normalized to ’1%6 for Center-Driven Wire Admittance,

Realized on a Terminal Eigenadmittance Basis

100 Meter Antenna
. Mode Element Normalized Value (ohms, farads, henries)
f |
. :
3 1 R, .663 .663
B R, 2200.6 2200.6
c 2.72x10"3 288.6x10" 12
11
. Ly 434.55 46.11x10™%
: a
2 Ryp 29.76 29.76 |
Ry 4280. 4280. 1
Rys 571.4 571.4
Ry, 53.07 53.07 :
| Rys 397.4 397.4 1
Ly, 290. 3 30.80x10™° ]
Loy 3817. 405.x10"° i
Lo, 141.2 14.98x10™8
Lo, 18.45 1.958x10™°
| Cay 3.649x10™ 38. 7210712 ¥
‘ C5 8.126x107 8.622x10712 {
< Cys 1.681x1072 1784x10"12 1
Cay 1.278x10"3 135.6x10"12 §
Cys 6.218x10™ 65.98x10™12 i




Mode

Element

U'W
-

Ln”
[

U'W
w

U\w\n”\.nwlﬂ”\r\n”
O o N O o

51
52
53
54
55
56
57

[

51

[

53
54
55
56

[l 2

[l
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Table 2 (continued)

Normalized Value

50.69
5228
1003
2829
947.2
137.9
718.5
761.1
254.9

1.539x10%
3.926x10"
7.068x10"
3.362x10"
2.52x1073
2,608x10™
1.738x10"

5
5
4

4
4

242.4
1817.
188.
125.3
28,3
50.96

100 Meter Antenna
(ohms, farads, henries)

50.69
5228
1003
2829
947.2
137.9
718.5
761.1
254.9

16.33x10"12

4.166%10" 12
7.499x10™ 12
35.67x10™12
267.4x10"12
27.67x10"12
18.44x10™12

6
6

25.72x10"
192.8x10"
19.95x10™¢
13.29x10"8
3.003x10~°
5.407x10™6

- = = T

—

[
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4 | { Table 2 (continued)
|
3 ;
- 100 Meter Antenna }
F Mode Element Normalized Value (ohms, farads, henries) E
1
. ' 3
7 R, 53.02 53.02
; R, 5967 5967
. R, 2500 2500
: R, 1682 1682
R 3611 3611 i
Rog 106.5 106.5
R, 254.1 254.1
R.g 377.7 377.7
Rog 175.9 175.9
C,y . 8.368x10° 8.879x10" 12
C5, 2.427x107° 2.575x10" -2
c,, 2.285x107° 2.424x10" 12
f C,, 3.62x10"% 38.41x10" 12
Cos 2.161x10"3 229.3x10" 12
Cop 4.982x10~2 52.86x10" 12
c,, 1.129x10"3 119.8x10"12
L., 230. 24.40x10"16
L, 1373 145.7x10~°
L., 316.5 33.58x10"°
L., 717. 76.08x10"°
Los 15.42 1.636x107°
L 14.52 1.541x10"°
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4.2.2 Pole-Pair Realization Using First Layer Poles

Although the previous section gives a practical circuit for the
admittance of a center-driven wire, several factors limit its use. An eigen-
mode synthesis for modes higher than seven requires the SEM poles lying in the
fifth and higher layers. Such poles are very hard to extract, and to date
have not been extracted. This would result in a band limitation on the cir-
cuit if the higher modes are not represented. Also, as more modes are
included in the representation more poles per mode are needed for realiza-
tion, which leads to more circuit elements per mode.

For these reasons and because poles other than first layer appear
to contribute negligibly to the total admittance, a circuit using only first
layer pole~palr admittances is constructed. In light of the very small non-
PR values associated with the first layer poles, it is reasonable to assume
that some realization yields a circuit which includes some small, negligible
negative elements.

The following observation in regard to the Bott-Duffin synthesis
provided the necessary insight for approximate realization of the circuit.

Suppose a negative conductance , equal to the maximum negative value of a

GN
modified pole-pair admittance, is removed from the admittance, The result-
ing admittance is PR, since its real part has been raised by a level equal to
the absolute value of GN' If a Bott-Duffin synthesis is then performed on
this PR admittance, the circuit module given in Figure 59 results.

Here YC and YL are functions obtained in the Bott-Duffin synthesis
and are subsequently synthesized by the removal of a conjugate pole. The

module is seen to consist of three branches: a shunt conductance, a capaci-

tive branch, and an inductive branch. Since the overall admittance of this
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module at w = 0 is zero, then the admittance real part of YL’ GL’ must equal
GN' Furthermore, the conductance of the inductance branch is limited to a

maximum of GL’ since the elements in the branch are in series with GL' Now

since

logl << [¥P] 5.1)

- for the first layer poles, then

lo | << |¥ 3l (5.2)

as well,

This demonstrates that only the capacitive branch need be included
in the gynthesis and the other branches are negligible. This realization has
the correct behavior at zero frequency, and has the proper pole at the proper
peak value. The peak value does not differ from the original because, at the
pole, the inductive branch contributes admittance GN’ while the resistor con-
tributes —GN. Only the final value of the admittance would differ from the
original pole-pair admittance, and this is negligible.

This scheme is used to synthesize An equivalent circuit using only
first layer poles for the center-driven wire, The resulting circuit is given

in Figure 60, and a table of circuit element values given in Table 3.

e peen | s qmue WOVN ey IS
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Table 3 izn
. Element Values for Center-Driven Wire Equivalent Circuit -
Realized by First Layer Pole-Pair Admittances L
. 100 HMeter Antenna L ‘
- \ Pole Element Normalized Value (ohms, farads, henries)
5 1 Ry, .663 .663 L |
] ‘
3 Ry, 2200.6 2200.6 i.‘
o ¢y 2.72x10"3 288.6x107 12 .
-6 .
L 434,55 46.11x10 i
11
8 3 Ry, 4958.7 4958.7 l.»
Cyy 4.728x10"% 50.17x10" 12 if.
C,y 1.063x10™> 112.8x10" 12 :
‘ L 368.22 39.07x10™° |
\ 21 . . Lo
8
l 5 Ry, 6513.5 6513.5 P
Cay 2.253x10"% 23.9x10"12 (]
Cyy 2.787x10"% 29.57x10" 12 -
-6 [-_
Ly 31,4 36.22x10 g
: 7 R, 7542.3 7542.3 L
Gy 1.418x10"% 15.05x10" 12 \i‘
C4s 1.249x10™% 13.25x10" 12
L 324.6 34.44x107° [i]
41 -‘
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Table 3 (continued)

100 Meter Antenna

Pole Element Normalized Value (ohms, farads, henries)
9 Rg, 8374.8 8374.8
Cs, 1.011x10"% 10.73x10"1L2
<., 7.124x107> 7.550x10" 12
L 311.91 33.09x10~°
51 .

4.,2.3 Circuit Performance

The transient current response at the port of the circuits is ana-
lyzed by means of a SCEPTRE circuit analysis program implemented on an IBM
370 computer. The circuit is excited at the port by a Gaussian pulse of the
form

2
V() = o~ (AN(E-TMAX)™ (5.3)

7 and TMAX = 60.802x102 seconds. These results are then

where AN = 3,25x10

compared to results from the thin wire time dowmain (TWID) program for a similar

wire. Figure 61 illustrates these results for the eigenadmittance circuit,

and Figure 62 illustrates the results for the first layer circuit synthesis.
The response for the two circuits is almost identical. The eigen-

admittance circuit shows more oscillatory behavior but this is due to the

truncation of the modes at mode seven. For late times the response is very

close to the TWID response, Note that both circuits miss the early time,

andsealiale
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or forced, response. This indicates that the representation for the wire is

b not complete. A study was made to attempt to discover what was missing to
1 cause this early time response error. If we observe that the wire is a

capacitive object, then it can be theorized that the SEM representation of

JUNGE

the admittance should include a shunt capacitor across the port. Such a

capacitor would correspond to a pole at infinity. It can be demonstrated

g TR T S S AT e e

|
§
\
ﬁs that the respounse of such a capacitor would be such that it would give the
i
F i correct forced response and not affect the late time. The current response
?§ of a capacitor is given by
-
| dv .
_ i(t) = C 3c ° (5.5)

If the forcing function is a Gaussian pulse then the current contributed by

the shunt capacitor is given by

- 2
1(t) = ¢ e (AN(E-TMAX))™ 5 \N(e - TMAX)) . (5.6)

Such a shunt capacitor can be viewed as a lumping of the static capacitances

associated with an infinite number of poles neglected in the synthesis. This

conjecture is supported by work done by Franceschetti [14] on the quasi~

static capacitance of spheroidal antennas.

4.3 Quarter-Driven Wire .

In the last chapter we showed that some of the terminal eigenadmit-
tances for this structure are non-PR. Thus an alternate means of realizing the ' 2

equivalent circuit is employed here. In order to perform the synthesis at this
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[' feed point, we resorted to an ad hoc grouping of poles so as to achieve PR

e g " S

"pole group" admittances. The groups used are as follows:

Group 1

pole 1, first layer
Group 2

pole 2, first layer

pole 1, second layer

Group 3
g “ pole 3, first layer
pole 2, second layer
pole 1, third layer
Group 4
s L pole 5, first layer
Group 5
, -pole 6, first layer
pole 7, second layer
? | pole 1, fourth layer
| Group 6
pole 7, first layer
pole 8, second layer
4‘; 1 pole 4, third layer
Group 7

pole 9, first layer

—-———a

Group 8
pole 10, first layer

l_ pole 9, second layer

l; pole 8, third layer
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!
{

!l Poles 4 and 8 of the first layer were not included, because of their negligi-
!

: ble pole-pair admittances., Table 4 lists the values of the poles and residues
‘ used.
‘ Table 4
|
!
Poles and Residues Used for 1l/4-Fed Synthesis of Cylindrical Antenna
N
.
- 'ad hoc' Group Poles Residues
2 -3 -3
] 1 -.08427+j.9158 .6192x10™3+1,1619x10
ke
i 2 -.1199+11.890 .1268x10” 24§, 3537x10">
;\i ~2,149+10.0 ~.1707x10 2+§.0
3 -.1473+§2.870 .5496x10"+,2259x10"3
-2.491+§1.328 .1159x1073-4.1483x10™3
| -4.098+10.0 ~.2497x10"34+§0.0
4 -.1877+§4.834 L9177x10" 4+5.1117x10"> ;
. 3
5 -.2038+35.814 .1500x10™ 241, 4254x10"> .
~3.225+16.620 .9804x10™ 3=§.2504x10" > i
' ~6.006-1.884x10"2 * * R
ie
6 -.2177+16.792 .5494x10"+1, 3144x10"> :
-3.297417.632 .54621x107 41, 1116x10" 2 I;l
| ~5.069+] 3. 890 .6790x10™ 4§, 8824x10™> i
- =2 -4 7
S 7 -.2426+§8.736 .1074x10"%4+.7253x10 [;
8 -.1783+]9.766 .1641x10"2+1.5373x10"> lr
! ~3.363+18.636 —.1079x10™ 24§ . 6414x10" > ;
-5.638+18.235 .2912x10"%4+4.8177x10™> .
i [fj
Poles are normalized as per Tesche [9] )
4 *Residue value unavailable L

——
=
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Figure 63 gives the circuit synthesized from the above groupings
using the Bott-Duffin procedure. Table 5 gives the element values. The cir-
culit was analyzed with the SCEPTRE program, using the same Gaussian pulse as
in the previous example, and a comparison with results computed by TWID was
made. Figure 64 illustrates this comparison. The circuit response exhibited
(when compared to TWID) oscillations of relatively high magnitude. These
oscillations cause the signal to be degraded in late time, However, the gen-
eral shape wasAreplicated. The early time response shows the same departure
from TWID as did the center-driven wire., There are two possible sources of
fhe oscillations. One is an incorrect element value in one of the modules.
The other more likely possibility is an error in the SEM poles, partic-

ularly in the higher frequency, deeply embedded ones.

4.4 Admittance Synthesis for Circular Loop

As stated in Chapter 1II, there are an infinite number of poles in
an eigenmode of the circular loop. Therefore, a terminal eigenadmittance
module has an infinite number of elements and is unrealizable in a practical
sense. By truncating the set of eigenmode poles, a truncated terminal eigen-
admittance module can be constructed. Two problems remain, however. First,
the truncation may not result in a PR admittance, in which case the modified
Bott-Duffin procedure of Section 4.2.2 must be used, Namely, the admittance
is made PR by removing a negative conductance, and then neglecting this con-~
ductance branch and the inductance branch in the subsequent Bott-Duffin
synthesis, Second, even if the truncated admittance is PR, the complexity of
the Bott-Duffin circuit grows quickly with pole count. The number of elements
required for a Bott-Duffin synthesis grows by 7x2N-6, where N is the number of

pole-pairs. Thus an admittance composed of 4 pole-pairs requires 106 elements.
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Table 5

Element Values for Pole Groupings of Quarter-Driven Antenna

Pole

Group Element

R
B2

‘11

L1

2 R21

Ry2

Rys3
21
22
23
24

O 0O 0. a0

L
L2
Lys

w
b

31
32

o W

33
34
35
36
37

12

[

Normalized Value
7.427
4311.9

1.51x10"3

782.3

2234.4
3.405
.752

4
4

8.003x10
2.288x10"
1.787x10"%
1.026x10"

300.5
17256.
. 3846

36.13
5806.
4677
1597
1042
355.6
286.5

100 Meter Antenna
(ohms, farads, henries)

7.427
4311.9

160.2x10" 12

83x10~%

2234.4
3.405
.752

84.91x10" 12
24, 28x10" 12
18.96x10"°
108.9x10"°

31.88x10"°

1.831x10"3
40.81x10™°

36.13
5806.
4677
1597
1042
355.6
286.5
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Table 5 (continued)

Pole 100 Meter Antenna d
Group Element Normalized Value (ohms, farads, henries) E
3 Cqy 1.843x10™" 19.56x10"12 ;
Csy 6.606x10"° 7.009x10~12 i
Cas 3.24x10™° 3.438x10" 12 ,
Cay 3.174x10"% 33.68x10" 12 {
c 1.634x10™% 17.34x10" 12 i
35 -3 -12 ;
c 2.007x10 213.0%10 g
36 ,
Loy 527.9 56.02x10"° '
Lo, 3339 354.2x10"° :
Loy 271.8 28.84x10"0
Lo, 107.9 11.66x10™°
-6 ‘
Los 53.9 5.719x10 ?
;
4 Does not couple :
5 R, 1.418 1.418 :
Ry, 32510. 32510.
Cs, 7.893x10~° 837.5x10"12
L 541.3 57.43x10"°
51 . .
6 R, 65.91 65.91
R, 17640. 17640.
Ry 38400. 38400.
R64 32450, 32450,
Rys 258. 3 258.3
Res 118.7 118.7
Ry 140.4 140.4
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)
6 Cey 1.182x10™% 12.54x10"12
G, 1.258x107° 1.335x10" 12
C 1.790x10"° 1899x10"12
Ces 4.909x10™° 5.209x10" 12 *
Cgs 7.124x10™% 75.58x10 12
Ceg 2.471x10"% 26.22x10" 12 4
Lg; 223.7 23.74x10"°
Lg, 3246, 344, 4x10"° |
Lgs 1126. 119.5x107% i
Le, 57.33 6.083x10"°
-6 i
Lgs 8.156 .8654x10
| | 7 R,y 108.3 108.3
}
R, 2615. 2615.
; R, 708. 708.
R, 65.4 65.4
Ry 31.12 31.12
| R 336.9 336.9
' R, 2661. 2661.
Rog 28810. 28810.
‘ R 720.5 720.5
f R0 60540 60540
E R, 5592. 5592.
1
»
e
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Table 5 (continued)

[ SIS LD S U S

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)
| 7 C,y 9.245x1o:2 9.809XI0:;2
‘?' Cqy 1.06SXI0-4 11.3x10 12
% Cqsy 2.084x10 22.11x10
3 C.y 3.532x1073 374.8x10712
| Cps 1.642x1072 1743x10712
x Crg 3.355x10"% 35.6x10" 1%
| c,, s.aanlo‘z 8.961x10:i§
| C.q 1.2.77><1o__5 13.55x10_12
Cr 4.131x10_4 4.383x10-12
C110 1.921x10 20.38x10
Cy 3.924x1o:: .6163XI0:12
¢y 2.437x10 .2586x10
Loy 159.1 16.88x10"°
i L, 240.6 25.52x107°
Lo, 77.82 8.257x10™°
= Lo, 361.9 38. 39x10™°
E Los 7.392 .7§43x10:2
] Log 4.592 .4872x10
'w Lo, 200, 6 21.28x10"°
' g 192.6 41.66x10~°
Lg 6656. 706.0x10~°
: L1 30940, 3.283x10:z
Ly 632.0 67.06x10

8 Does not couple




{ - 111 -

! Table 5 (continued)

?
‘1
Pole 100 Meter Antenna !
Group Element Normalized Value (ohns, farads, henries) 1
4
} 9 Ry, 64.38 64.38 %
‘ Ry, 102300. 102300. %
691 2.819x10™° 2.991x10" 12 i
-6
Loy 464.2 49.26x10
10 Ry01 5.875 5.875
R 02 3920, 1920,
\ Ryos 4209, 4209,
R o4 1610.0 1610,
Ryos 694.0 694.
R106 646.3 646. 3
R o 84.55 84.55
R s 80150. 80150. j
R109 32170, 12170
Ri010 1690, 1690.
R o1 33.94 33.94
C101 6.284x107° 6.668x10" 12
C,0 2.144x107° 2.275x10" 12
C103 5.458x10"1 5.791x10" 12
Cio4 4,066x10™° 4.314x10"12
Clos 2.147x107° 2.278x10712
106 2.418x10™" 25.66x10" 12
! ] C107 5.348x107° 5.674x10712
| Ci08 1.013x107% 10.75%10" 12
5 €100 1.359%10"% 14.42x10" 12
| 1010 4.989x10"° 5.296x107 12
F ]- Clo11 7.346x10"% 77.94x10712
* ; €012 1.830%x107% 19.42x10" 12

RO P SV SV P
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Table 5 (continued)

Pole 100 Meter Antenna
_ Group Element Normalized Value (ohms, farads, henries)

' -6
*- 10 L 135.7 14.40%10

} 101 -6
& L102 658. 69.82x10

~ -6
L 275.5 29.23x10

3 103 -6
| L 145.5 15.44x10

A 104 -6
| L 369.8 39.24x10

- 4 105 -6
! L 58.33 6.189x10

. 106 -6
L 148.4 15.75x10

107 -6
L 58.4 6.196x10

108 -6
L 110.7 11.74x10

f 109 -6

L1010 497.8 52.8ZXI0-6
L1011 1998. 212.0x10
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For these reasons, two circuits for the circular loop are con-
structed, representing two degrees of complexity. In the first, only the
type I poles of each eigenmode are used. In the second, all poles necessary
for a PR result are used, except when the data is insufficient for a PR

result, in which case the type I and type III poles are used.
4,4.1 Type I Poles

Given that the type I poles are the major contributors to the total
admittance of the loop, and that the non-PR excursions of these pole-pair
admittances are quite small, a modified Bott-Duffin synthesis of the type
used for realizing the first layer poles on the straight wire is implemented.
Because the loop is a closed object, it has a pole located at s = 0. This
pole represents the magnetostatic inductance of the loop which was realized
straightforwardly as a lumped inductor. Only the type I poles for the first
10 modes were used in the equivalent circuit. These are sufficient to real-
ize the response to the bandwidth of excitation used, The resulting circuit
is shown in Figure 65. Table 6 lists the element values, both normalized and
for a 100 meter radius antenna.

Again the circuit was analyzed by SCEPTRE and compared to TWID
results, Figure 66 displays this comparison. The agreement in early time is
excellent, but the peak values of the circuit are approximately 15 percent
higher than the TWID response. In the late time the circuit response is off-
set from the TWID response by about 0.2 ma, and the circuit response shows

oscillations.
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Table 6

Element Values for Circular Loop Equivalent Circuit Using Type I Poles

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

W
o

-6
Lo1 2165, 721.5x10

R11 47.35 47.35
. 3
- R12 10.16x10 10.16x10

3

4

12

C11 9.918x10 330.6x10

L) [~

6

L1 925.5 308.5x10

2 Ry, 16.63x10> 16.63x10° ‘
Cyy 2.802x10 93.4x10
c 1.335x10™2 4450.x10™12 )
( 22

Ly 862,.5 . 287,55

3 R 20.71x103 20.71x10°3 ;
31 ;
Cyy 1.529x10™°> 50.98x10"12 ‘

C55 8.616x10~% ' 287.1x10"12

818.1 272.7x10~6

24.21x103 24.21x10°

4

Cyy ~ L.007x0° 33.58x10712
C, 3.189x107% 106. 3x10712 T

-6
L41 785.7 261.9x10




 —

Mode Element

3 R51

Cs1

Cs2

Lsy

61

Co1
62

61

71

71
72

71

81

8l
82

81
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Table 6 (continued)

Normalized Value

26.98><103

5
4

7.332x10"
1.660x10"

760,2

29.24x10>

5.682x10"

1.016x10™%

738.9

31.11x10°
4.596x10"°

6.858x10"°

720.9

32.68x10°

5
5

3.831x10"
4.938x10"

705.3

26.98x10°

24.44x10" 12
55.32x10"12

253.4x10~°

29.24x10°

12
2

18.94x10"
33.86x10" L

246.3x108

31.11x10°

15.32x10" 12

22.86x10"12

240.3x10"°

32.68*103

12
12

12.77x10"
16.46x10"

235,1x10™8

100 Meter Antenna
(ohms, farads, henries)
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[y

|
. ; Table 6 (continued)
j

E
. 1
| i
‘ 100 Meter Antenna _
Mode Element Normalized Value (ohms, farads, henries) E
B 9 34.02x10°3 34.02x10° ¥
L R91 E
Co1 3.27x1073 10.9x10712 f
Cyy 3.729x107° 12.43x10712 i
| - »
E Ly, 691.2 230. 4x10 E
“ .
i 3 3
10 R oz 35.17x10 35.17x10
C101 2.838x10"> 9.46x10"12
C102 2.916x10™> 9.72x10"12
1 Lioy 678.6 226.2x10"8
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:'3 4.4.2 Type I and Type III Poles

The departure of the transient current response of the circuit

RASREGA S {adhd

from that of the TWID model in late time displayed in Figure 65 for the type

T T

the frequency range of interest. Therefore a circuit is constructed which

F

1.‘ I pole-pair synthesis 1s attributable to the omission of type III poles in
|
{
{
!
i
l
i

includes all type III poles for each eigenmode, up to the cutoff frequency

given by mode 10. For mode O, the type II pole is grouped with the type III
; poles, since this results in a PR function. For modes 1 and 2 and type I

'; plus type III pole groupings, the admittances are PR; for higher modes, they
w.‘ are not. For these higher modes the modified Bott-Duffin procedure is used

to make the groupings PR. The circuit derived is given in Figure 67, with

element values given in Table 7.

An analysis of this circuit on SCEPTRE and comparison to TWID

showed an improved response, particularly in the late time, as indicated in

Figure 68.

4,5 Sensitivity of Circuits

Although the circuits derived for the straight wire and the loop
are in principle realizable, practicality of the.realization still may be
limited by sensitivity considerations. In order to assess the sensitivity,
the two circuits previously described for the center-driven wire are sub~
jected to pseudorandom changes in element value over a range of +10% to -10%.
The random number generator is given in Reference [19]. In the range of -10
to +10 it has a mean of zero and a standard deviation of 5.8, No attempt
was made to do a complete Monte Carlo or worst-case analysis on circuit per-

formance. Several circuits with errors were made. The resulting circuits
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Table 7

Element Values for Equivalent Circuit for the Circular

Mode Element

02
03
04
05
06

Ro7
Ros
09
Ro10

Ro11
Ro12
Ro13
014
015

QO 0O 0O 0 0 0. 0 600N
QO O O O O ©O O © ©
O @ N O B W N

010
011

O O

Loop Using Type I and III Poles

Normalized Value

12.6x10°

22. 34x103
1.123x10°
120.7
819.2
408, 4x103
1143
122.9
168.4
401, 3x10
2208
60.2x10°
43.92x10
43.15x10°>
292.8x10°

3

3

5
5
6
5
3

5.334%x10"
1.233x10"
8.289x10"
2.473x10"
2.896x10"
1.089x10"
1.699%10
1.520x10
6.999x10
2.076x10
4.752x10

5
2
-5
-2
3
5

100 Meter Antenna
(ohms, farads, henries)

12.6x10°

22,34x103
1.123x10°
120.7
819.2
408.4x10
1143,
122.9
168.4
401. 3x10
2208
60.2x10>
43.92x10°
43.15x10°
292.8x10°

3

3

17.78x10" 12

4.111x10"12
2.763x10" 12
8.242x10712
965.3x10™ 12
3.631x10" 12
5663x10™ 12
5.065%1071
23330%1071
691,9x107 2
15,84x10" 12

2
2
2
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Table 7 (continued)

100 Meter Antenna

[ SO VaI——

Mode Element Normalized Value (ohms, farads, henries)
0 Co12 1.772x10™3 5.907x10" 12
Co13 2.319x10~8 .00773x10" 12
Co14 6.486x1077 21.62x10712
| Covs 3.048x10" .01016x10™12
- Cote 1.958x10™% 65.27x10712
: Cos7 6.915x10™8 .02305x10~ 12
Cora 4.260x10"8 .0142x10" 12 1
Cots 1.552x10"% 51.73x10"12
Co20 5.808x10"° 1.936x10™ 12
Coo1 4.959x10"8 .01653x10" 12
-6 -12
Co22 8.103x10 2.701x10
Lo 2165 721.5x10"6
Loy 7653 2551x10"°
Ly, 9657 3219x10"° »
Lo 286.4 95.46x10~%
Lo, 2344 781.3x10™% f
Lys 1.503 .5009x10~6
Log 2.445 .815x10™8 E
Ly, 3198 1066x10~5 ‘
Log 1.144 .3812x10"% [
Lo 3.411 1.132x10"% :
L 399.6 133.2x10™6
010 % [
LO11 2.1 s . 7x10
L 8.376x10 .1792 L
012 »
L 408.6 136. 2x10 [
013 6
L 608.1 202. 7x10 i
014 .
L 1219. 406.4x10
015 s 6
Loge 1.428x10 47598x10




——
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Element

017
018
019
020
021

[l Il I
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Table 7 (continued)

Normalized Value

1.026x10°

749.4
537.0
873.9

3.45x10°

49.36
1182
27.07x10
2294
8.314
111.6x10
9460
30801x10

3

3

3
9.891x10
6.309%10"
1.958x10
8.027x10
1.258

5.979x%10
6.636x10
9.369x10
8.433x10
1.459%10

4
5
2

-6
-6
=5
-6
-9

100 Meter Antenna
(ohms, farads, henries)

.03412
249.8%10
179.x1078
291.3x10
1.15

6

6

49.36
1182
27.07x10
2294
8.314
111.6x10
9460
30801x10°

3

3

329, 7x10 12
2.103x10"12
6.528x10"12
26757.x10712
.4193x10%
1.993x107%
2,212x10"12
31.23x10" 12
2.811x10712
.4862x10"17

2
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Table 7 (continued)

|
g
fl 100 Meter Antemna l
K| Mode Element Normalized Value (ohms, farads, henries) _
iv} -6 :
E | 1 Ly 1700 566.5x10 I;
;i Ly, 2.399x10° 7997x10™° 1
! L 1531 510, 3x10™° f
?31 Ly, 2159 719.7x107% [‘
! L, 930.3 310.1x10"% i
2 Ly, .3735 .1245x10% {I
| L, 20.56x10° 6.852
Lg 1616 538.6x107% [f
Lo 5016 1672x10™° ,
. L1 322, 2x10° 107.4 !
|
' 2 R, 1.521 1.521 [}
R,, 5199, ; 5199, ;
; R, , 29.63x10 29.63x10 I
j R,, 12.69x10° 12.69x10° |
G,y 2.734x10"% 91.14x10™12 lf
: Gy, 6.549x10™0 2.183x10712 R
C,4 6.627x107° 2.209x10712 |l
Cpa 7.314x10™0 2.438x10"12 f
f Ly, 2750 916.5x10™0 lja
i L, 2492 830.6x107% 5
| Ly, 868.5 289.5x107° ’f
Ly, 2462 820.8x10~% [}
i
i




|
1
3 ‘ Table 7 (continued)
| |
100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)
3 3
3 Ry 62.01x10 62.01x10
: Ry, 181.9x10° 181.9x10°
R, 27.98x10° 27.98x10°
Cyy 1.469x10~% 48.95x10" 12
Cyy 2.535x10"° .8451x10"12
C,s 1.090x10"3 363.4x10" 12
| Ca 2.242x107° .7474x20" 12
" Cys 2.448x10"8 .8159x10" 12
" Ly, 4248 1416x10"°
‘ Lo 3891 1297.x10"8
o Lo, 823.5 274.5x10"8
-6
: Lo, 4398. 1466x10
Vo
o 3 3
| 4 R, 71.58x10 71.58x10
| ] R, 212.4x103 212.4x10°
]
Rys 34.31x103 34.31x10°
| Cuy 9.588x10"> 31.96x10" 12
‘ C,s 2.046x10~8 .6821x10"12
! C4s 3,735x10™% 124.5x10" 12
| C,. 1.607x10" .5355x10" 2
{ - -
‘ c 1.644x1078 .548x10"12
[ 45
L,y 4038 1346x10"8
Ly 3945 1315x10~6
Ly 789.9 263.3x10"°
: L 5025 1675x10"°
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Table 7 ( continued)

100 Meter Antenna

R T TP e dkts
e X R -
e -

71

Mode Element Normalized Valye (ohms, farads, henries)
3 3
Ry, 79.92x10 79.92x10
R, 215.6x10° 215.6x10°
R, 40. 3x10° 40.3x10°
S5, 6.942x10™5 23.14x10712
Cs, 1.732x10~6 .5773x10™12
) Cs4 1.883x10™% 62, 78x10™12
Csy 1.229x10~6 .4095x10™12
Cs 1.151x10~6 .3837x10712
Ly, 3804 1268x10™6
L, 3957 1319x10™6
L, 763.2 254.4x10"6
L 5580 1860x10~6
54
3 3
R, 29.24x10 29.24x10
Ce 5.682x10™3 18.94x10"12
C, 1.016x10™% 33.86x10"12
-6
Ly, 738.9 246. 3x10
3 3
R, 31.11x10 31.11x10
€5y 4,596x10™3 15. 32x10"12
Cyy 6.858x10™3 22.86x10"12
L 720.9 240, 3x10™6
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} l Table 7 (continued)
f1 1
.i |
E |
f: Mode Element Normalized Value
! ; 32.68x10°
| 8 R81 «68x%10
- ] : c 3.831x10"°
3 'C82 4,938x10
4
E
,’i le 705.3
9 Ry; 34.02x10°
)
‘ -5
c 3.27x10
} 91 "
C92 3.729x10
| L91 691.2
| 10 Ro1 35.17x10°
‘ :‘
=5
0101 2.838><10_5
o C102 2.916x10

i Lio1 678.6

100 Meter Antenna
(ohms, farads, henries)

32.68x10°

12.77x10" 12
16.46x10 12

235.1x10"8

34.02x10>

10.9x10"12

12.43x10" 12

230.4x10™8

35.17x10°

9.46x10"12
9.72x10" 12

226.2x10"°
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were then run on SCEPTRE. A typical result, compared to the uncorrupted run,
is given in Figure 69 for the first layer pole-pair synthesis. The responses
are identical in the early time, where only the object's force response is
important. In late time, the pole shifting caused by the element variations
results in a distorted response. The sensitivity of the eigenadmittance
circuit was also examined this way, with a similar result. This is not sur-
prising, since it is well known that a Bott-Duffin synthesis is very semnsitive

to element errofs [15].
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P CHAPTER V
CONCLUSIONS
3 We have demonstrated the feasibility of synthesizing passive~
L ‘
S component equivalent circuits which simulate a single-port immittance of a

i passive antenna/scatterer. Circuits developed here replicate well the

A : terminal response of straight-wire and wire~loop structures except in the
early time. It is conjectured that circuits which account for the static
capacitance of the structure completely, can bring this early time behavior
into agreement, as well,

From the point of view of developing simple systematic equivalent

circuits, one would desire that pole-pair contributions to immittance would
prove to be positive real functions. Disappointingly, this study reveals an

» abundance of counterexamples to this desirable result. We have observed,

L however, that the dominant poles in the resonant structure of the object -

those nearest the jw axis - have admittances which manifest a near PR behav-

ior. Through negligible adjustments to these admittances, PR behavior was
achieved.

Terminal eigenadmittances for the circular loop and center-driven
wire are shown to be PR within the limits of numerical accuracy. However,
certain terminal eigenadmittances for the quarter-driven wire are non-PR.
Although it is known that the inverse eigenvalues are PR, the PRness of all
terminal eigenadmittances remains to be demonstrated. Since the eigenset
grouping of poles is only conjectured, it is not poasible to reach a definite

conclusion at this time in regard to terminal eigenadmittance PRness.
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The spherical antenna is suggested as an object for study of admit-~

tance synthesis properties in the future. That eigensets are well-defined

and that each eigenset embraces a finite collection of poles provide the

potential for complete and conclusive studies.

The present work has addressed only the admittance element of

Norton equivalent modules. The companion source terms need to be studied

in light of the present work. In particular, when sources are combined even

on a pole-pair basis, the composite source exhibits a frequency dependent

transfer function from the excitation waveform. This frequency dependence

introduces circuit complexities which are likely to preclude physical real-

ization. Approximate methods for circumventing this frequency dependence

are warranted.
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| APPENDIX

The proof of the positive realness of the integral operators for

the antenna scattering problem is given here. This proof is due to Wilton

[13] and reproduced here.

Consider a conducting scatterer S with unit surface normal n illu-

minated by an incident field (Ei,ﬁi). A surface current J is induced on §

L which produces é scattered field (Es,ﬁs) satisfying the boundary condition

AxEL+8 =3 (A.1)

- on S. By the equivalence theorem, the scatterer may be removed and replaced
by the surface current J radiating in free space. This current, radiating g
in the absence of the sources of the incident field, produces the scattered

field (Es,ﬁs) exterior to S.

In the absence of other sources, the total energy radiated by the

current distribution J is always positive semidefinite:

t
E(t) = f W(t) dt 2 0 , (A.2)

- 00

where E is the energy and W(t) is the total power radiated by J at time t and

is computed as follows:

- fai-j'ds, (A.3)
s

¥
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where the lower case quantities are time-domain counterparts of the corre-
sponding upper case transform-domain quantities. The current 3 and incident
field Ei are related through an integral equation, which fact will be

exploited subsequently.

We next suppose the incident electric field and induced current are

given by
. o o Sot o, _ s(’)‘t _ spt
" j(r,t) = Jo(r)e + JS(r)e =2 Re{}oe ’ (A.ba)
s .t skt St
@0 =y ®e? + B e -2 Re{P.JOe 0 } (A.4b)

where Sy = 9% + jmo, % > 0, and where EO is an arbitrary complex vector
function of position, and 30 is the resulting complex current response. The
excitation is assumed to start at t = -, where there is no initial energy

g.t

in the system. Since e 0" . 0 for t = ~=, both Ei and 3 are zero and there

is no transient term, That is, the 'forced' response above is the total

response.

The power W(t) radiated is now

2s .t
- - 0
2 Re {{EoJoe +

and hence the total energy radiated is

[ g W oy W s..oerm

[ g WY snpe B
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E.+»3J, 28.t E.+ 3, 2.t
n(c)-naf{—g—;—‘-’-eo+° °e°}ds.
. s 0 %

If we write the first integral in polar form,

B, -3
=y
s 5o

b

cos (Zmot + ¢)

Vie must consider the case wy = 0 and wo # 0 separately.
Case I, w, = 0

In this case, (A.5) can be written as

eoot f
) - = e
E(L) ol {Re(no I + Re(, Jo)} ds

e g,.t

RS S
A Re{Eo (J0+Jo)} ds
S
20,.t

(A.5)

(A.6)
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from which we conclude that

‘S[ReEovReJodS?_O. A.7)

But since EO is arbitrary, we could replace it by jﬁo and the corresponding

current response would be j3° by the linearity of the system. Hence, from

(A.7), 1t must also be true that

Re(JE.) * Re(jJ.) dS = fImE-Im?r ds 20. (A.8)
sf 0 0 s 0 0

Equations (A.7) and (A.8) together imply that
E L] -* = f £ L) J E . I
Re !.EO JO ds Z (Re Eo Re JO + Im E0 Im Jo) ds 2 0. (A.9)

Case II, ) #0

From (A.6), we note that since the maximum negative value for the

cosine 1s'-1, we must have

g, - 7
Re f—o—a—-—gdsz

E,+3J
JE o
S

20, (A.10)
S 0 %0
Thus for both cases we have
= . =a
Re _!Eo JodSzO, ao>0, (A.1l1)

which is a necessary condition on all solutions of scattering problems involv-

ing passive scatterers.

Using (A.1ll) we next derive a condition similar to the positive

real condition on driving-point immittances in circuit theory. The condition
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applies to the dyadic kernel of the operator relating J to Ei through the

electric field integral equation

i x El(z,8) = & x IE(E,?';s) e J(¥'38) as' . (A.12)
S
Since Ei and J are transform quantities, (A.ll) applies for a point 0 = Re s

in the right half plane:

Re f f.'r*(?) - 2(5,7) « IE) as’ ds
S S

5 ff[:r*G) cEGEE) - IEDY + [*® - G - IE) 1‘} as' as
S 8

[3*@ - Z@,t) « 3@ + @) - 2HED) - i@ ] as' as

'
-
ne_
(IJ\_s

[7*® - 2@

FEY) + XD - IRE,D") - 3(?'-)} as' ds

[ ]
e
mgﬁ
0

=) [3*(?) . [2(?,?') + 2*(?,?')] . 3(?')}ds' ds

w2

mgﬂ

3ix') as' s 20, (A.13)

- f _f.'f*(;) * Re Z(7,r')
S 8§

where the dagger denotes the transpose conjugate and where we have used the

reciprocity condition that ]

ZH(E,T') = Z%(T,T") = Z%:',D) .

Thus, Re Z must be positive semidefinite for o > 0; {i.e.,

Re Z 20, c>0, (A.14)
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L.

; % ’ where (A.14) 1s a shorthand notation for (A.13), except for operators which
! are merely complex constants.

‘,% i We note that condition (A.14) is analogous to one of the so~called
| ‘ positive real conditions for immittances of m—port networks. For such net-
1 works, the positive real condition is shown to be both a necessary and

¥ : sufficient condition for the realizability of a passive network. The suffi-
i

ciency of the condition is established by actually deriving algorithms for

synthesizing such networks. We are not yet at this stage in electromagnetics,

- TTOES

but we are now in a position to list several independent conditions, analogous

to those of an m~port immittance matrix, which the impedance operator for a

[ e Sihfinani

passive scatterer must necessarily satisfy:
¢h) 5(?,;';9) is analytic in Re(s) > 0; !
f (2) Z(r,t';s) is real for real positive s; g

(3) Re E(;,;';s) 2 0 for Re s > 0,

LYY Rusis

Though the sufficiency condition has not been demonstrated, we nevertheless
term operators with kemmels satisfying these conditions as positive real. As i
in network theory, it is possible to find alternative conditions for (1)-(3), !
which are simpler to test. We also note that to arrive at these conditions,

we must write the integral equation in the form of (A.12). We point this out ‘
because it is common to view the right-hand side of (A.12) as the scattered
field, in which case the left-hand side, in view of the boundary conditions,

would have a negative sign. In this form, the resulting impedance operator

could be termed 'negative real',
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Next, we note that 2(;,;';3) can be written in terms of its eigen-

spectrum as

Z(r,r';s) = Z An(s)jn(;;s)jn(;';s) , (A.15)

where An is an eigenvalue and jn is the corresponding eigenvector satisfying

the eigenvalue equation

Sf'i(?,‘é';s) . Sn(?:';s) ds' = A ()T (T38) (A.16)

and where 3n is orthogonal to all other eigenvectors

‘s,‘j“'(;;S) «J (r;8) as =65 . (A.17)
Note that Z is an operator-valued analytic function of s and we assume that
An and jn are likewise analytic. The absence of the complex conjugate in the
second eigenvector in (A.17) is at first disconcerting, but it should be
remembered that the operator Z is not self-adjoint, but is complex symmetric;
i.e., zt(z',T) = Z*(r,r'). Briefly, the eigenvectors jn should be biorthogo-
nal to the eigenvectors of the adjoint operator, 2*(;',;), which, in view of
the complex symmetry of 2, are just 3:. The resulting biorthogonality con-
dition is (A.17).

We note that (A.13) must be true for all possible current distribu-
tions J and hence must be true for J(r;s) = 3m(;;s). Substituting this con-

dition and (A.15) into (A.13) results in

i
|
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e A e o

. - == = -, =1
Re !!J;(r) . an(s)Jn(r)Jn(r') - J (« ) das' ds

oo = =
| - Re{xm(s) _s[ P*@ - IO ds}

‘.‘ = Re {Am(s) ‘s[ljm(;)lz dS} 20,
L

from which we conclude that An(s) is positive real

;.J : Re A (s) 20, g>0, (A.18)

o It can be shown that for scalar quantities, (A.18), together with the require-

ment An(s) is real when s is real, is equivalent to the following conditions:

(a) An(s) has no poles or zeros in the right half plane;

(b) poles of An(s) on the imaginary axis must be simple and the residues

evaluated at these poles must be real and positive;

17
€
In

8

) (¢) Re An(jm) 20, 0

The latter condition is particularly important because it requires only the
examination of ln on the jw axis rather than in the whole of the right half
plane. As an example of the application of these conditions, we note that
for a wire loop there exists only a ¢-directed current, which is found by

; requiring the ¢—~component of electric field to vanish on the loop.

Thus the
kemel is scalar-valued and has been found by T. T. Wu to be




- 143 -

z(¢.¢') - Z jnoﬂ.an e-jn(¢-¢')

im0

= jngmag + Z jnonan [e-jn“-d") + eJn(¢-¢')] ’ (A.19)

n=1

where the rearrangement to the trigonometric form is made to more closely

compare with (A.15). Thus, jan(s) must be positive real. But jun(s) is

positive real if and only 1f EZJT;y is positive real and it has been
n

verified by direct computation that _-l(;)_ has no poles either in the

ja

n
right half plane or on the jw axis, thus satisfying conditions (a) and (b).

Condition (c¢) implies that we must have

1 1
P agw - Maaw 20

which appears to be true [18].
Finally, we consider the jw axis poles of the inverse operator,

whose kernel is the resolvent kernel

ma] - -t J (;93)3 (;',8)
1zt - z o ' _n . (A.20)

n An(s)

We know that poles on the jw axis must be simple and that the vector compo-
nents of the current jn’ which are cavity mode currents, are cophasal and
hence, because of the normalization (A.17), are real. Furthermore, at a
pole, one of the eigenvalues, say km’ has a simple zero and can be approxi-

mated by the first term in its Taylor series for a pole at 8% by
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Am(s) - al(s - so)

or in polar form by

ié

Am(s)-aee ’

1

where (s - so) = ¢ ej¢. Since the pole term will dominate, then on the

semicircle of radius ¢ in the right plane, we have the condition

Re ff&*-i-ﬁds'ds
s s

- - - - - -t - et
. e j‘ j‘J (r,8) - J (r,8) J (r ,s5) * J(r ,sp) is' ds
S s o€ e“’
- f.?n(?,s) . 3(%,8) das|? Re —2 s
S ale e
- - - - 2 i
[Jn(r,s) + J(r,s) dS i
S cos (¢ +0) 20, (A.21) |
a, e
|%1] I
jo T T ,:
vhere o, = 'alle . The condition (A.21) must hold for -3 < ¢ = 3, i.e., a‘
for s in the right half plane, which is possible only if © = 0, This implies "<
that f
dr_ g
1% T |sms @.22) |
0 .
is real and positive., It can easily be checked that this condition is con- L‘

tained in condition (c) above,

Ho—
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3 Note that for antenna problems, we can take EO to be a unit voltage
source (i.e., a § function) at some pair of terminals on s and conclude that

the input admittance is positive real. The above proof establishes the PRness

of the inverse eigenvalues, but does not address the question of the PRness
of terminal eigenadmittances. The PRness of the terminal eigenadmittances

may be explored based on the PRness of the eigenadmittances -I-%;T established
n

above and on (2.13), which is written here in terms of the natural current

modes and gap geometry as¥*

gs
. (A.23)

7= - T -
"4 <Jn(rss) H Jn(r’3)>

5 1
Yn(s) = Xn(s)

It is convenient to define Yn(s) = -i-%gy and
n

3 (r,8) ; a >2
n g
B2 (A.24)

A <§n(?.5) ; in(F.s)> '

A ﬁn(s) =

such that

} e r.r i1 r i i r
- Y (8) = (v F - vnFn) + I F, + Y F)

where the superscripts denote respective real and imaginary parts. It fol-

lows that PRness of §n(s) hinges on the adherence to

" i 4 i1
ann 2 YnFn . Re{s} 2 0 . (A.25)

*The foregoing material due to Wilton used his notation of explicit expression
of integration. From here forward, we revert to the symmetric product nota-
tion used throughout the body of this work,
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Because of the complexity of (A.24), it is difficult to draw gen-
eral conclusions regarding the satisfaction of (A.25). Clearly, one might
test (A.25) on a numerical basis, but to do so would be computationally
costly since an eigenvalue problem would need to be solved. For the case
that the eigenmodes in are pure real for s = jw, it follows directly from
(A.24) and (A.25) that the terminal eigenadmittances gn(s) are PR. This is
the case for both the loop and sphere geometries, but the real modes for
these structures devolve from symmetry degeneracies. On the other hand, the
first few natural modes on the straight wire exhibit small real parts for s
near the jw axis, and (A.25) is likely to be satisfied.

With the respective high—Q and low-Q extremes of the straight wire
and the sphere likely yielding PR terminal eigenadmittances, one might be
tempted to draw broad conclusions. However, some common topological feature,

such as convexity, might bear on the results for these two special cases,

thereby qualifying any general conclusions which one might draw.
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